DAA-003-001513

Seat No.

Third Year B. Sc. (Sem. V) (CBCS) Examination April / May - 2015

Mathematics: Paper - BSMT - 501 (A) (Theory) (Mathematical Analysis - I & Group Theory)

> Faculty Code: 003 Subject Code: 001513

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) This question paper contains two sections.

- All the questions are compulsory. (2)
- (3) Write answers of the MCQs in your answer-book only.
- Numbers written to the right indicate full marks (4) of the question.

SECTION - I

- Select the correct option from the given options (to answer 20 1 the given questions):
 - (1) If P and P^* are two partitions of [a, b] and $P \subset P^*$ then
 - (A) $||P^*|| > ||P||$ (B) $||P^*|| \le ||P||$
 - (C) $||P^*|| \ge ||P||$ (D) $||P^*|| < ||P||$

(2)
$$\int_{\underline{a}}^{b} f dx = \underline{\qquad}$$

- (A) $\operatorname{lub}\left\{U(P,f)\right\}$ (B) $\operatorname{lub}\left\{L(P,f)\right\}$
- (C) $\operatorname{glb}\left\{U\left(P,f\right)\right\}$ (D) $\operatorname{glb}\left\{L\left(P,f\right)\right\}$

- (3) If P is a partition of [a, b] and if $n \to \infty$ then $||P|| \to \underline{\hspace{1cm}}$.
 - (A) 1 (B)
- (C) 0 (D) -1
- $(4) \quad \int_{\underline{a}}^{b} f dx \quad \underline{\qquad} \int_{a}^{\overline{b}} f dx$
 - $(A) \quad \leq \qquad \qquad (B) \quad <$
 - (C) ≥ (D) >
- (5) $U(P, f) = \int_{a}^{\overline{b}} f dx + \in, \text{ where } \in > 0.$
 - $(A) \quad > \qquad \qquad (B) \quad <$
 - (C) \leq (D) \geq
- (6) If (X, d) is a discrete metric space and $\delta = 1$ then
 - (A) $N(a, \delta) = \{\delta\}$ (B) $N(a, \delta) = \{a\}$
 - (C) $N(a, \delta) = \{X\}$ (D) $N(a, \delta) = X$
- (7) Every finite subset of a metric space is _____.
 - (A) open
 - (B) closed
 - (C) neither open nor closed
 - (D) open and closed
- (8) Cantor set is _____.
 - (A) open
 - (B) closed
 - (C) neither open nor closed
 - (D) open and closed
- (9) Bod N =_____. (Boundary of N)
 - (A) N (B) R
 - (C) ϕ (D) N'

(10)	For $a \in X$ and $\delta = 1$, $N(a, \delta)$ is	
	(A) open	
	(B) closed	
	(C) neither open nor closed(D) open and closed	
(11)		
(11)	(N,+) is a group	
	(A) True(B) False(C) May or may not be(D) None of these	
(19)	(Z_n, \bullet_n) is a group	
(12)	` '	
	(A) True, for every $n \in N$	
	(B) False, for every $n \in N$	
	(C) If n is a prime number(D) None of these	
(13)		OUP
, ,	of G iff	
	(A) $a*b^{-1} \in H \forall a, b \in H$	
	(B) $a*b^{-1} \in G \forall a, b \in H$	
	(C) $a^{-1} \in H$	
	(D) None of these	
(14)	A subgroup H of a group G is NORMAL of G if	•••••
	(A) $Ha = aH$ for every $a \in G$	
	(B) $a*b \in G, \forall a, b \in H$	
	(C) $gHg^{-1} \in H$ for every $g \in G$	
	(D) None of these	
(15)	The permutation $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$ is	
	(A) An odd permutation	
	(B) is a transposition	
	(C) A cyclic in S_3	
	(D) None of these	
DAA-003-	-001513] 3	[Contd

- (16) The inverse of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3 \end{pmatrix} \in S_5$ is given by
 - (A) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} \in S_5$
 - (B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix} \in S_5$
 - (C) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 3 & 2 \end{pmatrix} \in S_5$
 - (D) None of these
- (17) If G is a group $a \in G$ then O(a) = n then
 - (A) $O(a^q) > O(a)$; $\forall q \in Z$
 - (B) $O(a^q) \ge O(a); \forall q \in Z$
 - (C) $O(a^q) \le O(a); \forall q \in Z$
 - (D) None of these
- (18) If for $a, b \in \mathbb{N}$, $a * b = a^b$ then the operation * is
 - (A) Commutative
 - (B) Not associative
 - (C) Not a binary operation
 - (D) None of these
- (19) If U is a non-empty universal set and Δ is symmetric difference then for group $(P(U), \Delta)$ the identity element
 - (A) Does not exist
- (B) is U

(C) is ϕ

- (D) None of these
- (20) Isomorphism of groups is
 - (A) Partial Order Relation
 - (B) Equivalence Relation
 - (C) Anti-symmetric Relation
 - (D) None of these.

SECTION - II

2 (a) Attempt any three:

6

- (1) Define:
 - (i) Neighbourhood
 - (ii) Interior point
- (2) In usual notation prove that if $A \subset B$ then $A^{\circ} \subset B^{\circ}$.
- (3) Define Cantor set.
- (4) If $f(x) = \frac{20}{x}$ where $x \in [2, 20]$ then find L(P, f) and U(P, f) by taking partition $P = \{2, 4, 5, 20\}$.
- (5) Define: Lower Riemann sum and Upper Riemann sum.
- (6) Evaluate $\int_{0}^{1} x^{2} dx$ by using definition of *R*-integration.
- (b) Attempt any three:

- (1) Let f be a bounded function defined on [a, b]. If P and P^* are two partition of [a, b] such that $P \subset P^*$ then prove that $L(P, f) \le L(P^*, f) \le U(P^*, f) \le U(P, f)$
- (2) Evaluate: $\lim_{n\to\infty} \left(\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \dots \left(1 + \frac{4n}{n} \right) \right)^{1/n}$
- (3) Prove that : $\frac{\pi^3}{51} \le \int_0^{\pi} \frac{x^2}{10 + 7\cos x} dx \le \frac{\pi^3}{9}$.

- (4) If $E = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$ then prove that E is neither open not closed subset of R.
- (5) Prove that every closed interval [a, b] is a closed set.
- (6) In usual notation prove that A is closed $\Leftrightarrow \overline{A} = A$.
- (c) Attempt any two:

10

- (1) State and prove general form of first mean value theorem of integral calculus.
- (2) State and prove necessary and sufficient condition for a bounded function defined on [a, b] to be Riemann integrable over [a, b].
- (3) State and prove first mean value theorem.
- (4) State and prove the necessary and sufficient condition for a subset of metric space to be an open set.
- (5) In usual notation prove that \overline{E} is a closed set.
- 3 (a) Attempt any three:

- (1) Define:
 - (i) Binary operation
 - (ii) Cyclic group
- (2) Define:
 - (i) Isomorphism of groups
 - (ii) Normal subgroup

- (3) Define:
 - (i) Cycle
 - (ii) Alternating subgroup
- (4) If $G = (\mathbb{Z}; +)$ and $H = 4\mathbb{Z}$ then write all the elements (cosets) of G H.
- (5) Define:
 - (i) Inner automorphism
 - (ii) Quotient Group.
- (6) Prove that intersection of two subgroup is also a subgroup.
- (b) Attempt any **three**:
 - (1) If $G = R \{-1\}$ and let * be defined as a * b = a + b + ab for every $a, b, c \in G$ then prove that (G, *) is a group.
 - (2) Prove that, if G is a group and if $a \in G$ is of order n then $a^m = e$, for some integer m iff n/m.
 - (3) State and prove necessary and sufficient condition for subgroups.
 - (4) If H and K are normal subgroups of a group G with $H \cap K = \{e\}$ then prove that kh = hk for each $h \in H$ and for each $k \in K$.
 - (5) Prove that any two disjoint cycles in S_n are commutative.
 - (6) If G is a cyclic group of order 24 generated by a and $H = \langle a^6 \rangle$ then write all the elements of G/H, construct the group table of G/H and specify its identity element and inverse elements.

(c) Attempt any two:

- (1) State and prove Lagrange's theorem for finite groups.
- (2) Prove that set A_n of all Even permutations is a subgroup of the group S_n and $O(A_n) = \frac{n!}{2}$.
- (3) For a given element a of a group G, prove that the set $H = \{x \in G/xa = ax\}$ is a subgroup of G.
- (4) Prove that the isomorphism between two groups is transitive relation.
- (5) State and prove Cayley's theorem for groups.